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Introduction
During the design of any optical system destined to be manufactured, it is critical to define 
a fabrication and assembly budget. This budget must consider any potential compensation 
that will be used during the manufacturing process to mitigate the performance degradation 
introduced by fabrication variations. It is important to specify the best set of tolerances and 
compensators, as these will significantly impact the manufacturing costs. The complex process 
of defining system tolerances and compensators is often simply called, tolerancing.

Some minimum tolerances are dictated by the manufacturing process. It is important to 
perform a sensitivity analysis on these tolerances to determine the as-built performance of the 
system. Alternatively, an acceptable performance degradation may drive the tolerances. An 
inverse sensitivity analysis determines the set of tolerances that achieve a specific performance 
degradation. Both of these analyses should consider the effects of permissible compensators.

Why is Tolerancing Important?
The simple answer is cost. A design may be very expensive to manufacture if small variations 
in the lens parameters result in significant performance loss even after compensation is 
applied. The ideal optical system design minimizes production costs and meets performance 
requirements using achievable component and assembly tolerances and well-chosen post- 
assembly adjustments. Optical design software can help to make this ideal manufactured 
system a reality, and the tolerancing process should be fast, flexible, and accurate.

Tolerancing with Optical Design Software
Many optical design software packages have the ability to perform a tolerance analysis; 
however, the algorithms used for tolerancing may differ. Ideally, a tolerancing algorithm provides 
a combination of speed, accuracy, and insight into which tolerances drive system performance; 
unfortunately, many optical design packages offer tolerancing algorithms that only provide two 
of these three.

CODE V is a comprehensive software package offered by Synopsys for the design, analysis, 
tolerancing, and fabrication support of optical systems. CODE V is used worldwide by 
organizations to design a wide range of optical systems for a variety of products, including 
digital camera equipment, medical instruments, aerospace systems, telecommunication 
components, microlithographic stepper systems, and many more. Many of these companies 
and users chose CODE V for its advanced algorithms and features related to tolerancing.

Optical Design Tolerancing
A Key to Product Cost Reduction
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In addition to traditional algorithms for calculating tolerance sensitivity, CODE V also includes the Wavefront Differential tolerancing 
method that is extremely fast and accurate. The speed of this method enables tolerancing to be performed frequently throughout 
the design process, not just as an end-of-the-project analysis. The Wavefront Differential tolerancing algorithm can even be invoked 
during optimization itself, allowing direct optimization for tolerance desensitization, including the impact of realistic compensation.

Two Traditional Approaches to Tolerancing
Finite Difference and Monte Carlo are two common tolerancing algorithms. The Finite Difference approach individually varies each 
parameter within its tolerance range and analyzes the resulting system performance for each tolerance. These individual results 
are statistically combined to yield a total system performance prediction. This method predicts performance sensitivity for each 
tolerance, which helps to identify the individual parameters that are “performance drivers.” To keep unnecessary cost out of a design, 
it is important to have tight tolerances only on those parameters that cause the greatest performance degradation for small changes. 
Only the most sensitive components should warrant the extra cost associated with tight tolerances.

The Finite Difference method does not consider how simultaneous changes in multiple parameters interact; its prediction of overall 
performance is typically optimistic. The effects of multiple tolerance interactions on the system performance are known as cross- 
terms. The Finite Difference method also suffers from numerical precision issues when a tolerance change causes a small difference 
between two very large numbers.

The Monte Carlo approach varies all of the fabrication parameters by random amounts within each tolerance range and typically 
uses optimization to compensate (i.e., refocus) the system. This simulates the performance of a single production unit chosen at 
random. The analysis of this random unit constitutes a single Monte Carlo trial. This process is repeated many times with different 
random perturbations. An accurate statistical prediction of the probability of achieving a particular performance level is generated if 
many trials (typically 100 to 1000) are run. Because all of the parameters are being varied at the same time, the Monte Carlo method 
accurately accounts for cross-terms. However, no information can be obtained from the Monte Carlo analysis about individual 
tolerance sensitivities. As such, you can accurately predict a system’s as-built performance, but you cannot determine the specific 
tolerances that are driving the performance, and therefore cannot select the best set of tolerances to minimize cost.

Both the Finite Difference and Monte Carlo tolerancing methods are computationally intensive, which can be slow. With the Finite 
Difference method, a system’s performance must be analyzed twice for each tolerance parameter (to consider the impact for both 
the plus and minus perturbation), and additionally this is done for every field and lens configuration (zoom). Thus, more complex 
systems will take longer for a tolerance analysis than simpler systems. For example, a triplet typically has over 50 tolerances and 
perhaps 3 fields resulting in over 300 required simulations.

Some optical design software packages utilize polynomial curve-fitting routines during the initial Finite Difference tolerance analysis 
to decrease the computational time required for subsequent tolerance analyses. In this case, the effect of changing a tolerance value 
can be quickly analyzed using the polynomial coefficients. However, this approach is useful only if tolerancing is the last step of the 
design; otherwise, the polynomials will need to be recalculated every time the design changes, adding to the overall time required for 
both design and tolerancing.

In the Monte Carlo approach, the system must be analyzed for every trial. System complexity is less of an issue, but many trials are 
required to achieve an accurate performance prediction. Analyzing a complex system to a reasonable level of accuracy using either 
the Finite Difference or the Monte Carlo method may require many hours (or even days) of analysis time.

Wavefront Differential Tolerancing
The Wavefront Differential algorithm is very fast and combines the best attributes of both the Finite Difference and Monte Carlo 
methods. The Wavefront Differential method provides information about individual tolerance sensitivities (like the Finite Difference 
method) and a more accurate performance prediction, including the effect of cross-terms (like the Monte Carlo method).

The speed of the Wavefront Differential approach is derived from the design of the algorithm. All of the information needed for the 
initial and all subsequent tolerance analyses is obtained from the nominal system by tracing a single group of rays. This single-pass 
approach is extremely fast, even when compared to curve-fitting routines.

The algorithmic foundation for the Wavefront Differential analysis method is based on the work of Hopkins & Tiziani [1], King [2], 
and Matthew Rimmer [3], [4]. The advanced algorithms developed by Mr. Rimmer used in CODE V’s tolerancing feature (TOR) were 
first implemented in CODE V in 1978, decades prior to any other commercial implementation. The CODE V Wavefront Differential 
algorithms have been continually enhanced since they were first introduced, and include many proprietary features and advanced 
capabilities not found in any other software package.
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With Wavefront Differential Tolerancing, You Can:
• Utilize the following performance metrics: RMS wavefront error, diffraction MTF, single mode fiber insertion loss 

or polarization-dependent loss, and Zernike wavefront coefficients

• Perform a sensitivity analysis to the current tolerance set

• Use the Inverse Sensitivity mode to automatically determine each tolerance within user-defined tolerance limits 
such that it contributes about equally to a specific system performance degradation for the worst case field 
and zoom position. A subset of tolerances can be frozen so that their values remain fixed

• Use the Interactive Tolerancing mode to make changes to individual tolerance values and instantly see the 
performance impact

• List tolerance sensitivities and performance predictions for every field and zoom position, with either common 
or independent compensation across field and zoom position

• Assign specific compensators to specific tolerances by using tolerance and compensator labels

• Force compensation based on field symmetry without requiring additional field points to be entered

• Assign tolerances and compensators to a specific configuration of a multi-configuration lens (i.e., a 
specific zoom position)

• Override tolerance limits for each supported tolerance type

• Create a new tolerance by grouping individual tolerances

• Perform accurate tolerancing of double-pass systems or systems with parametric relationships among the 
constructional data (such as the front and rear radii and center thickness of a ball lens)

• Predict changes in distortion (or calibrated distortion) due to tolerances

• Compensate for image quality while simultaneously correcting line-of-sight errors (i.e., boresight correction) 
and magnification errors, due to tolerances

• Define different tolerance probability distributions for different classes of tolerances

• Identify the best compensator set from among all possible compensators using a singular value 
decomposition algorithm

Assumptions of the Wavefront Differential Method
The accuracy of the Wavefront Differential method is dependent on a few assumptions. Primarily, the ray optical path differences 
(OPDs) due to tolerance perturbations are assumed to vary linearly with the perturbation. Typically, this assumption is valid if the 
perturbation is small and results in a slight degradation of the nominal performance, which is what a designer nominally tries to 
achieve when tolerancing a system. 

Also, the Wavefront Differential method is only applicable to performance metrics that can be computed by analyzing the complex 
field at the exit pupil of the system. Such metrics include wavefront error, diffraction MTF, fiber coupling insertion loss, polarization- 
dependent insertion loss, and Zernike wavefront coefficients. 

Additionally, development of the Wavefront Differential equations requires knowledge of how each tolerance affects the system; 
CODE V’s Wavefront Differential tolerancing option (TOR) will analyze pre-programmed (i.e., built-in) tolerance types, of which there 
are over 60. Also, new tolerance types can be “synthesized” by combining existing tolerances (e.g., a ball lens diameter tolerance can 
be constructed from two radii and one thickness tolerance).

Finally, the tablular output for the Wavefront Differential tolerancing assumes that the overall performance probability has a Gaussian 
form, defined by a mean and sigma. This assumption is typically valid if each tolerance is contributing about the same to the overall 
performance degradation, which is what TOR’s inverse sensitivity analysis tries to achieve. Otherwise, the Gaussian probability 
assumption tends to be conservative. It is important to understand that the Wavefront Differential method includes cross-terms; 
wavefront differentials are computed for each tolerance and for every pair of tolerances, so these important factors are included in 
the overall predicted performance for the system.
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Tolerancing 
Algorithm

CODE V 
Command

Supported 
Performance Metrics

Supported 
Tolerances Comments

Wavefront
Differential TOR

• RMS Wavefront Error
• Diffraction MTF
•  Fiber Coupling Efficiency
•  Polarization Dependent 

Loss
•  Zernike Coefficients-based 

error function

CODE V pre- 
programmed tolerances 
(e.g., radius, thickness, 
wedge, barrel tilt, test 
plate fit (in fringes), etc.)

• Very fast
•  Very accurate for tolerances that result in a 

small degradation in system performance 
(includes cross-terms)

•  Provides individual tolerance sensitivities and 
accurate performance prediction

•  Both inverse sensitivity and sensitivity 
analyses are supported

•  Supports optional distortion analysis, 
boresight correction, and an SVD 
compensator algorithm

Finite
Difference

TOLFDIF 
(macro)

Any quantity that
CODE V can compute

Most CODE V 
preprogrammed 
tolerances and macro-
based user-defined 
tolerances

•  Can be slow depending on number of 
tolerances, fields, zooms, and type of 
performance metric analyzed

•  Provides accurate individual tolerance 
sensitivities, particularly for larger tolerances

•  Performance summary is optimistic because 
cross-terms are not included

•  Method assumes that the performance 
variation is quadratic with tolerance, 
which may not be valid for the requested 
performance metric

• Sensitivity analysis only

Monte Carlo TOLMONTE 
(macro)

Any quantity that CODE V 
can compute

Most CODE V 
preprogrammed 
tolerances and macro-
based user-defined 
tolerances

•  Can be slow depending on the number of 
trials requested and type of performance 
metric analyzed

•  Provides accurate performance prediction (if 
many trials are requested)

•  No information about individual tolerance 
sensitivities

• Sensitivity analysis only

Table 1: Feature summary of CODE V’s primary tolerancing methods

The fast Wavefront Differential method can be effectively used in concert with other tolerancing methods, for optical engineers 
who are accustomed to alternative algorithms. Designers often take advantage of the speed of the Wavefront Differential method’s 
inverse sensitivity analysis to quickly determine appropriate tolerances and compensators. Afterward, a single Monte Carlo analysis 
of the resulting system (consisting of a large number of trials) can provide assurance of the accuracy of the Wavefront Differential 
performance prediction. After gaining experience with the Wavefront Differential method, most users find that the extra Monte Carlo 
analysis step is unnecessary.

CODE V fully supports the Finite Difference and Monte Carlo tolerancing methods for systems in which the Wavelength 
Differential method’s assumptions are invalid. Table 1 lists the supported performance metrics and tolerance types for each of 
the three methods.

The applicability of CODE V’s Wavefront Differential tolerancing method to real systems is affirmed by its successful use within 
Synopsys’ Optical Engineering Services Group to define tolerances and analyze as-built performance for over a thousand fabricated 
designs. Additionally, thousands of systems have been successfully analyzed and fabricated by CODE V customers around the world; 
Wavefront Differential tolerancing can be a powerful feature in your optical design toolkit.    

Example System: F/2.5 Double Gauss Objective
To illustrate these different tolerancing methods, consider an F/2.5, 14° half-FOV Double Gauss lens, as shown in Figure 1.  
The comparison uses the set of CODE V default tolerances which, for this lens system, is 52 centered tolerances (i.e., thickness, 
index, power, or irregularity) and 16 decentered tolerances (i.e., wedge, element tilt, or element decenter). The radial and tangential 
MTF at 15 cycles/mm across the field of view is used as the performance metric for the tolerance analysis. While CODE V’s fast 
Wavefront Differential tolerancing and user-tolerancing features allow for multiple compensators, for this example the only allowed 
compensation is a longitudinal shift of the image plane to achieve maximum on-axis performance. This type of compensator is often 
called refocus.
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Figure 1: F/2.5 Double Gauss Lens

Table 2 shows the tolerance set, based on first running the Wavefront Differential tolerancing method in inverse sensitivity mode.In 
this mode, TOR tries to set the tolerance values so that each results in identical performance degradation at the worst case field and 
zoom, after compensation. More sensitive parameters are assigned tighter tolerances, and less sensitive ones, looser tolerances. 
However, the tolerance values must remain between realistic default or user-specified tolerance limits.

C E N T E R E D 
T O L E R A N C E S 

           F/2.5 Double Gauss 
  --------------------------------------------------------------------------------------------- 
                       RADIUS      FRINGES                  THICKNESS              INDEX   V-NO 
  SUR       RADIUS       TOL       POW/IRR       THICKNESS     TOL     GLASS        TOL    (%)  
 

    1     48.57123     0.0200     2.0/ 0.50        6.00000   0.02000  NSSK2      0.00050  0.80 
    2    131.57415     0.6000     2.0/ 0.50        0.10000   0.02000 
    3     39.95081     0.0200     2.0/ 0.50       14.00000   0.02000  NSK2       0.00020  0.80 
    4   -142.35727     6.7000    12.0/ 3.00        5.00000   0.02000  F5         0.00020  0.50 
    5     23.51612     0.0200     2.0/ 0.50        4.06422   0.04000 
    6                                             22.19286   0.04000 
    7    -24.31769     0.0200     2.0/ 0.50        4.00000   0.02000  F5         0.00050  0.30 
    8   -426.08911    73.0000    12.0/ 3.00       10.00000   0.02000  NSK16      0.00050  0.50 
    9    -34.42842     0.0200     6.0/ 1.50        0.10000   0.10000 
   10    149.62579     0.5000     8.0/ 2.00       10.00000   0.10000  NSK16      0.00150  0.50 
   11    -76.35573     0.1000    10.0/ 2.50       57.81453 
   12                                             -0.70092 
 
                                               D E C E N T E R E D 
                                              T O L E R A N C E S 
 
          F/2.5 Double Gauss 
  -------------------------------------------------------------------------------------------------------- 
  ELEMENT          FRONT       BACK           ELEMENT WEDGE         ELEMENT TILT          EL. DEC/ROLL(R) 
    NO.           RADIUS      RADIUS         TIR     ARC MIN       TIR     ARC MIN       TIR     mm. 
 

     1          48.57123   131.57415       0.0040      0.3       0.0123      1.0       0.0112   0.0200 
     2          39.95081  -142.35727       0.0020      0.2                             0.0231   0.0200 (R) 
    2- 3        39.95081    23.51612                             0.0079      1.0       0.0029   0.0200 
     3        -142.35727    23.51612       0.0020      0.3 
     4         -24.31769  -426.08911       0.0060      0.8                             0.0211   0.0200 (R) 
    4- 5       -24.31769   -34.42842                             0.0137      1.7       0.0001   0.0200 
     5        -426.08911   -34.42842       0.0080      0.8 
     6         149.62579   -76.35573       0.0400      3.2       0.0131      1.0       0.0176   0.0200 
 
 

Table 2: Tolerance set determined with Inverse Sensitivity Tolerancing

For this analysis, all scalar and cylindrical parameters are assumed to have an equal probability of having any value within the plus 
and minus tolerance limits. Two-dimensional decentered tolerances use a Gaussian probability distribution. Additionally, the tolerance 
probability distribution can be modified in CODE V for different classes of tolerances. The system will be analyzed for the following 
five field positions: on-axis, +/-70% field, and +/- full field. Symmetric fields are used to access both radial and tangential MTF. If field- 
averaged compensation is desired, or decenter compensators are present, the off-axis fields should be duplicated for the Monte Carlo 
analysis. TOR can handle the field symmetric compensation algorithmically, without duplicating fields, by means of an input control.
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Tolerancing Method Computation Time for an Intel®  Core™ i7 2.7GHz CPU

Wavefront Differential (TOR) 2 seconds

Finite Difference (TOLFDIF) 46 seconds (23x TOR)

Monte Carlo—1000 trials (TOLMONTE) 17 minutes, 37 seconds (494x TOR)

Table 3: Speed comparison of tolerancing methods

Using these settings, three tolerance analyses were performed using the described algorithms. Table 3 compares the relative 
speed of the tolerancing methods, and is based on execution for a single processor with the same number of rays in the ray grid 
for each analysis.

The Wavefront Differential and Finite Difference tolerancing methods provide information about individual tolerance sensitivities.
This information allows the designer to determine the tolerance drivers for the system. As an example, Table 4 shows the change 
in performance resulting from a perturbation of a symmetrical tolerance that can be compensated with refocus (i.e., the radius of 
surface 7) and a decenter tolerance that cannot be compensated with refocus, for both methods. The compensation motion is 
analytically calculated with the Wavefront Differential method and determined by optimization in the Finite Difference method. Both 
selected tolerances are among the top 5 most significant tolerances for this system (out of 68 total).

 

Single Tolerance Comparison 

(Delta Radius of surface 7, ± 0.020mm) 

Wavefront Differential Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) +0.016 -0.018 

2 (+10 deg, 
tan) 

+0.024 -0.027 

3 (+14 deg, 
tan) 

-0.014 +0.007 

4 (-10 deg, 
rad) 

+0.003 -0.005 

5 (-14 deg, 
rad) 

-0.015 +0.013 

Compensator (refocus) Motion for best 
axial focus = +0.0673 mm 

Finite Difference Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) +0.016 -0.017 

2 (+10 deg, 
tan) 

+0.029 -0.033 

3 (+14 deg, 
tan) 

-0.016 +0.008 

4 (-10 deg, 
rad) 

-0.001 -0.002 

5 (-14 deg, 
rad) 

-0.017 +0.015 

Compensator (refocus) Motion for best 
axial focus = +0.0692 mm 

 

Single Tolerance Comparison 

(Y Decenter of surface 3-5, ± 0.020 mm) 

Wavefront Differential Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) -0.001 -0.001 

2 (+10 deg, 
tan) 

+0.033 -0.049 

3 (+14 deg, 
tan) 

-0.021 +0.006 

4 (-10 deg, 
rad) 

+0.018 -0.023 

5 (-14 deg, 
rad) 

+0.010 -0.017 

Compensator (refocus) Motion for best 
axial focus = +0.0000 mm 

Finite Difference Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) -0.002 -0.002 

2 (+10 deg, 
tan) 

+0.033 -0.049 

3 (+14 deg, 
tan) 

-0.020 +0.006 

4 (-10 deg, 
rad) 

+0.018 -0.023 

5 (-14 deg, 
rad) 

+0.010 -0.016 

Compensator (refocus) Motion for best 
axial focus = +0.0000 mm 

 
 

Mean+2  Comp. Motion for all 
tolerances using the Wavefront 

Differential method = 

 
 

±0.4110 mm   

 

2  Comp. Motion for all tolerances 
using the Finite Differences method = 

 

±0.4169 mm 
 

 
  

 

Single Tolerance Comparison 

(Delta Radius of surface 7, ± 0.020mm) 

Wavefront Differential Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) +0.016 -0.018 

2 (+10 deg, 
tan) 

+0.024 -0.027 

3 (+14 deg, 
tan) 

-0.014 +0.007 

4 (-10 deg, 
rad) 

+0.003 -0.005 

5 (-14 deg, 
rad) 

-0.015 +0.013 

Compensator (refocus) Motion for best 
axial focus = +0.0673 mm 

Finite Difference Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) +0.016 -0.017 

2 (+10 deg, 
tan) 

+0.029 -0.033 

3 (+14 deg, 
tan) 

-0.016 +0.008 

4 (-10 deg, 
rad) 

-0.001 -0.002 

5 (-14 deg, 
rad) 

-0.017 +0.015 

Compensator (refocus) Motion for best 
axial focus = +0.0692 mm 

 

Single Tolerance Comparison 

(Y Decenter of surface 3-5, ± 0.020 mm) 

Wavefront Differential Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) -0.001 -0.001 

2 (+10 deg, 
tan) 

+0.033 -0.049 

3 (+14 deg, 
tan) 

-0.021 +0.006 

4 (-10 deg, 
rad) 

+0.018 -0.023 

5 (-14 deg, 
rad) 

+0.010 -0.017 

Compensator (refocus) Motion for best 
axial focus = +0.0000 mm 

Finite Difference Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) -0.002 -0.002 

2 (+10 deg, 
tan) 

+0.033 -0.049 

3 (+14 deg, 
tan) 

-0.020 +0.006 

4 (-10 deg, 
rad) 

+0.018 -0.023 

5 (-14 deg, 
rad) 

+0.010 -0.016 

Compensator (refocus) Motion for best 
axial focus = +0.0000 mm 

 
 

Mean+2  Comp. Motion for all 
tolerances using the Wavefront 

Differential method = 

 
 

±0.4110 mm   

 

2  Comp. Motion for all tolerances 
using the Finite Differences method = 

 

±0.4169 mm 
 

 

Table 4: Single tolerance comparisons between Wavefront Differential and Finite Difference methods
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Notice that the difference in the predicted MTF degradation across field for the two methods is within 0.006 MTF for the 
compensated tolerance. This small difference is not unexpected, since the compensation solution will be slightly different between 
the two approaches. The predicted performance degradation matches almost exactly (within 0.001 MTF) for the uncompensated, 
decenter tolerance. The predicted refocus for the radius tolerance is within 2 µM for the two methods. Also, the predicted mean plus 
2σ compensator motion range for all tolerances correlates very well for the two methods (within 7 µM). The predicted performance 
degradation due to any of the individual tolerances is similar to these representative examples.

All three methods (Wavefront Differential, Finite Difference, and Monte Carlo) predict the cumulative probability performance, when all 
tolerances are applied. However, the prediction from the Finite Difference method tends to be optimistic, since it does not include the 
impact of cross-terms (i.e., how the individual tolerances interact to impact performance). Both the Wavefront Differential and Monte 
Carlo methods include cross-terms.

 

Performance Summary Comparison 

Change in MTF  at 15 cycles/mm 

Cumulative Probability 

Wavefront Differential Results 

Field 50% 84.1% 97.7% 99.9% 

1 -0.0135 -0.0394 -0.0653 -0.0912 

2 -0.0164 -0.0676 -0.1189 -0.1701 

3 -0.0186 -0.0489 -0.0792 -0.1096 

4 -0.0190 -0.0518 -0.0846 -0.1174 

5 -0.0164 -0.0458 -0.0752 -0.1045 

 

 

 

Monte Carlo Results (5000 trials) 

Field 50% 84.1% 97.7% 99.9% 

1 -0.0115 -0.0373 -0.0657 -0.0978 

2 -0.0064 -0.0623 -0.1311 -0.2000 

3 -0.0145 -0.0482 -0.0974 -0.1701 

4 -0.0172 -0.0503 -0.0887 -0.1412 

5 -0.0121 -0.0484 -0.1003 -0.1620 

Table 5: Cumulative performance summary for three tolerancing methods

     

 Figure 2: Wavefront Differential cumulative Figure 3: Monte Carlo cumulative 
 probability chart probability chart
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Table 5 compares the cumulative probability performance summary for the Wavefront Differential and Monte Carlo methods. It 
lists the MTF degradation at the 50% (mean), 84.1% (mean plus 1σ), 97.7% (mean+2σ), and 99.9% (mean+3σ) probability levels. The 
values in the table represent maximum degradation in MTF for a given field for a certain percentage of built systems, assuming 
a random application of tolerances within their tolerance limits on each parameter. Users can also control the distribution of the 
random perturbations (e.g., uniform probability between tolerance limits, a Gaussian probability between the tolerance limits, etc.). 
Once again, fields 2 and 3 indicate tangential MTF performance, fields 4 and 5 the radial MTF, and compensation is for best axial 
focus. The results between the Wavefront Differential and Monte Carlo methods correlate well, with the predicted MTF degradation 
due to tolerances within 0.01 for both methods through “mean + σ” probability (84%) for all fields, and within 0.03 for the “mean + 2σ” 
probability (98%) at all the inner fields. While the Monte Carlo results become more pessimistic for the outer fields at the “mean + 3σ” 
probability (i.e., difference ~0.06), the average difference across all listed fields and probabilities is within 0.014 in MTF.

Figure 4: F/3.55 inverted telephoto before tolerance desensitization optimization

Each of the three CODE V tolerancing methods discussed in this paper will create a cumulative probability performance chart.
These charts show the performance at any probability level. Figure 2 is the cumulative probability plot generated by the Wavefront 
Differential tolerancing method (TOR). Figure 3 is the cumulative probability chart generated by the Monte Carlo method 
(TOLMONTE). Like the tabular data, they compare very well.

Directly Optimizing for Tolerance Desensitization
CODE V’s optimization capabilities have long been recognized as the best in the industry for achieving optimum nominal performance 
for systems ranging from the simple to the very complex. The speed of the Wavefront Differential tolerancing approach supports its 
inclusion as a separate, optional error function component in optimization (the Reduce Tolerance Sensitivity, or SAB error function). 
CODE V’s primary optimization algorithm is based on a Damped Least Squares (DLS) method, which works best for systems with 
many variables and many relevant aberrations to be reduced by those variables. The Wavefront Differential tolerancing approach 
allows aberrations based on multivariate equations to be created for every tolerance at every field and every zoom. This is an ideal 
problem for DLS!

Typically, when using SAB, you choose the same tolerance values for common parameter types, often based on tolerance classes 
such as commercial, precision, high precision, etc. The general goal is to optimize for a design form that can meet the as-built 
specification with the least-expensive tolerance set. SAB is best used early in the design phase and can also be effectively used 
during global optimization. Some pre-SAB optimization may be required, since a system with very poor nominal performance is 
generally insensitive to tolerance variations. SAB should be used on systems with “reasonable” nominal performance that will show 
degradation with “reasonable” tolerances.
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                                                C E N T E R E D 
                                              T O L E R A N C E S 
 

           F/3.55 Inverted Telephoto 
  ----------------------------------------------------------------------------- ----------------- 
                       RADIUS      FRINGES                  THICKNESS              INDEX   V -NO     
  SUR       RADIUS       TOL       POW/IRR       THICKNESS     TOL     GLASS        TOL    (%)     

    1     82.52700     0.0417     1.0/ 0.25        3.62536   0.05000  627.586    0.00050  0.50 
    2    552.75182     2.0127     1.0/ 0.25        0.10000   0.05000  
    3     70.28017     0.0412     1.0/ 0.25        4.24208   0.05000  669.523    0.00050  0.50  
    4     14.03202     0.0036     1.0/ 0.25       20.96646   0.05000 
    5     25.18458     0.0262     1.0/ 0.25        4.32311   0.05000  680.339    0.00050  0.50  
    6    -92.32481     0.4040     1.0/ 0.25        2.91221   0.05000 
    7                                              0.67259   0.05000 
    8     53.77045     0.2177     1.0/ 0.25        2.39888   0.05000  646.556    0.00050  0.50  
    9    -23.74002     0.0446     1.0/ 0.25        0.89584   0.05000 
   10    -15.73622     0.0212     1.0/ 0.25        3.03014   0.05000  755.275    0 .00050  0.50 
   11     28.32816     0.0670     1.0/ 0.25        0.78824   0.05000  
   12    -67.78803     0.3832     1.0/ 0.25        2.57758   0.05000  692.496    0.00050  0.50  
   13    -13.97934     0.0133     1.0/ 0.25       37.99347 
   14                                             -0.49333 
  
                                              D E C E N T E R E D 
                                              T O L E R A N C E S 
 

           F/3.55 Inverted Telephoto 
  -------------------------------------------------------------------------------------------------------- 
  ELEMENT          FRONT       BACK           ELEMENT WEDGE         ELEMENT TILT          EL. DEC/ROLL(R)  
    NO.           RADIUS      RADIUS         TIR     ARC MIN       TIR     ARC MIN       TIR     mm. 
 

     1          82.52700   552.75182       0.0130      1.1       0.0040      0.3       0.0107   0.0250  
     2          70.28017    14.03202       0.0130      1.9       0.0024      0.3       0.0299   0.0250  
     3          25.18458   -92.32481       0.0130      3.0       0.0015      0.3       0.0198   0.0250 
     4          53.77045   -23.74002       0.0130      3.9       0.0011      0.3       0.0175   0.0250  
     5         -15.73622    28.32816       0.0130      4.1       0.0011      0.3       0.0274   0.0250 
     6         -67.78803   -13.97934       0.0130      4.0       0.0011      0.3       0.0180   0.0250  
 

Table 6: “Select [5] Tolerance set

To illustrate the improvement possible using SAB, we will compare the final as-built performance for an inverted telephoto lens 
optimized without and with SAB. Figure 4 shows the best optimized result, without using SAB.

We will apply the “Select” class of tolerances which are achievable by a large number of optical fabrication vendors5 and also include 
a defocus compensator. The tolerance values are shown in Table 6.

The SAB optimization results are sensitive to the weight chosen for the SAB component. In general, the use of SAB with any 
weight will improve the as-built performance compared to the pre-SAB result; however, to find the weight that provides the 
maximum improvement, an iterative approach works best. The results shown in Table 7 for the “mean + 2σ” as-built RMS wavefront 
performance are based on using a macro to perform several optimizations (each using a different SAB component weight for all 
fields) and then to select the best result. The nominal (design) performance for the post-SAB result is typically degraded compared 
to the pre-SAB nominal performance; however, in this case, the nominal performance is essentially the same (on average) for both 
designs. The best solution reduced the as-built RMS wavefront error by 18% compared to optimizing without SAB.

              RMS Wavefront Error (waves @550 nm) 

                Pre-SAB Result      Post-SAB Result 

    RELATIVE   DESIGN  DESIGN       DESIGN  DESIGN    

      FIELD            + TOL                + TOL 

                                                 

  0.00, 0.00   0.3497  0.7098      0.3886  0.6000     

  0.00, 0.71   0.6242  1.0293      0.7370  0.9410     

  0.00, 1.00   0.8054  1.3309      0.6493  0.9862     

Average =>     0.5931  1.0233      0.5916  0.8424 (18% ) 

Table 7: Performance comparison for lens optimized without and with the Tolerance 
Desensitization Error Function (SAB)
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The final lens form, shown in Figure 5, is only slightly different than the system optimized without SAB (Figure 4), but much less 
sensitive to same set of manufacturing and assembly errors!

Figure 5: F/3.5 inverted telephoto after tolerance desensitization optimization

This paper demonstrates how CODE V’s advanced tolerancing features provide outstanding speed, accuracy, and flexibility, which 
ultimately help to maintain optical system performance while reducing costs during product development and throughout the 
product life cycle.
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